
Learning to Evade: Realistic Adversarial Network Packet Generation using Deep
Reinforcement Learning

Soumyadeep Hore1, Jalal Ghadermazi1, Diwas Paudel1, Ankit Shah1*, Tapas K. Das1, Nathaniel D.
Bastian 2

1University of South Florida, 2United States Military Academy
{soumyadeep, jghadermazi, diwaspaudel, ankitshah, das}@usf.edu, nathaniel.bastian@westpoint.edu

Abstract

Recent advancements in artificial intelligence (AI) and ma-
chine learning (ML) algorithms, coupled with the availability
of faster computing infrastructure, have enhanced the secu-
rity posture of cybersecurity operations centers (defenders)
through the development of ML-aided network intrusion de-
tection systems (NIDS). Concurrently, the abilities of adver-
saries to evade security have also increased with the support
of AI/ML models. Therefore, defenders need to proactively
prepare for evasion attacks that exploit the detection mech-
anisms of NIDS. Recent studies have found that the pertur-
bation of flow-based and packet-based features can deceive
ML models, but these approaches have limitations. Perturba-
tions made to the flow-based features are difficult to reverse-
engineer, while samples generated with perturbations to the
packet-based features are not playable.
Our methodological framework, Deep PackGen, employs
deep reinforcement learning to generate adversarial packets
and aims to overcome the limitations of approaches in the
literature. By taking raw malicious network packets as in-
puts and systematically making perturbations on them, Deep
PackGen camouflages them as benign packets while still
maintaining their functionality. In our experiments, using
publicly available data, Deep PackGen achieved an average
adversarial success rate of 66.4% against various ML models
and across different attack types. Our investigation also re-
vealed that more than 45% of the successful adversarial sam-
ples were out-of-distribution packets that evaded the decision
boundaries of the classifiers. The knowledge gained from our
study on the adversary’s ability to make specific evasive per-
turbations to different types of malicious packets can help de-
fenders enhance the robustness of their NIDS against evolv-
ing adversarial attacks.

Introduction
A network intrusion detection system (NIDS) is a primary
tool for cybersecurity operations centers (CSOCs) to de-
tect cyber-attacks on computer networks. With the avail-
ability of high-performance computing resources and ad-
vancements in artificial intelligence (AI) and machine learn-
ing (ML) algorithms, intrusion detection mechanisms have

*Corresponding author
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

greatly improved, serving the security needs of organiza-
tions. However, adversaries are also continuously advanc-
ing their toolchains by using AI/ML-enabled methodologies
to camouflage their attacks that can evade these ML-based
NIDS. Hence, the CSOCs must improve their security pos-
ture by proactively preparing for evasion attacks and making
their NIDS robust against evolving adversaries.

Evasion attacks on NIDS are mainly conducted by per-
turbing network flow-based features to deceive ML mod-
els. Table 1 shows a summary of recent studies that focused
on adversarial sample generation to evade NIDS. However,
flow-based attacks are impractical as reverse engineering
these perturbations from the flow level into constructing
the actual packets is very complex and difficult (Rosenberg
et al. 2021a). In addition, hidden correlations among differ-
ent flow-based features further exacerbate the computational
difficulty of replaying perturbations in a real network com-
munication (Han et al. 2021). More importantly, perturba-
tions must be made such that the communication’s function-
ality is maintained. Hence, crafting adversarial attacks at the
packet level is necessary to improve the practicality of im-
plementing evasion attacks.

A few studies in recent literature have focused on us-
ing packet-based data to construct evasion attacks (see Ta-
ble 1). These studies have utilized publicly available data
sets to obtain the samples for obfuscation and relied on mak-
ing random perturbations using trial-and-error and other ap-
proximation techniques. The generated adversarial samples
were then tested against linear, tree-based, and nonlinear ML
models for evasion. The limitations of these studies are as
follows. The perturbations made to the samples were mainly
focused on the time-based features, which a classifier can
be made immune to by training it with raw packet informa-
tion. Some also generate adversarial samples using packet or
payload injection and packet damage. However, there exists
a correlation among the packet-level features, directly im-
pacting the feature set of the classifier, which is not consid-
ered in any of these studies. This phenomenon is also known
as the side effect of packet mutation (Pierazzi et al. 2020).
Another limitation of existing packet-based approaches is
that they perturb both forward and backward packets (i.e.,
communication from the host to the destination and then the
destination back to the host). Clearly, an adversary can only
control the forward packets, those originating from the host

and going to the destination (server).
Our proposed methodological framework addresses the

above limitations in the following ways. Our methodology
uses a learning-based approach, in which an AI agent is
trained to make (near-)optimal perturbations to any given
malicious packet. The agent learns to make these pertur-
bations in a sequential manner using a deep reinforcement
learning (DRL) approach. We identify the forward packets
in network communication and only modify them to pro-
duce adversarial samples. We evaluate our adversarial sam-
ples against classifiers trained using packet-level data. We
aim to make minimal and valid perturbations to the original
packets that preserve the functionality of the communica-
tion. Examples of such perturbations include modifications
to the valid portions in the internet protocol (IP) header,
transmission control protocol (TCP) header, TCP options,
and segment data. Furthermore, we only consider perturb-
ing those features that can be obtained from the raw packet
capture (PCAP) files without any preprocessing. This makes
it practical to replicate the attack using perturbed packets.
We consider the side effects of packet mutation in this study.
For example, any change to the IP or TCP header affects the
IP and TCP checksum, respectively. A detailed description
of the perturbations and their side effects is provided in the
numerical experiments section. We also evaluate whether the
learning attained from one environment is transferable to an-
other. We do this to gauge the effectiveness of our method-
ology in real-world settings where adversaries may not have
any knowledge of the ML models and the data used to build
the NIDS. We demonstrate the playability of the adversar-
ial packet in a flow using the Wireshark application in the
supplementary material. In summary, our paper addresses
the literature gap for constructing adversarial samples by
developing a learning-based methodology with the follow-
ing characteristics: only the forward packets are perturbed;
valid perturbations are considered in order to maintain the
functionality of the packets; side effects of perturbations are
taken into account; effectiveness of the adversarial samples
is tested against unseen classifiers; and demonstrated trans-
ferability of the framework to another network environment.

There are several contributions to this research study.
The primary contribution is the development of a DRL-
enabled methodology capable of generating adversarial net-
work packets for evasion attacks on ML-based NIDS. Our
methodological framework, Deep PackGen, takes raw net-
work packets as inputs and generates adversarial samples
camouflaged as benign packets. The DRL agent in this
framework learns the (near-)optimal policy of perturbations
that can be applied to a given malicious network packet, con-
strained by maintaining its functionality while evading the
classifier. To the best of our knowledge, this is the first re-
search study that poses the constrained network packet per-
turbation problem as a sequential decision-making problem
and solves it using a DRL approach. Another novel aspect of
this research is creating a packet-based approach to develop-
ing classification models for ML-based NIDS. The unidirec-
tional (forward) packets from raw PCAP files are extracted,
preprocessed, feature-engineered, and normalized for ma-
chine computation. The transformed network packets are

then used to train the classifiers. Other contributions highly
relevant to the cybersecurity research community include the
insights obtained from the experiments and their analyses.
Our investigation reveals that our methodology can generate
out-of-distribution (OOD) packets that can also evade the
decision boundaries of more complex nonlinear classifiers.
Furthermore, we also explain why packets of certain attack
types can be easily manipulated compared to others. The
knowledge gained from this study on the adversary’s abil-
ity to make specific perturbations to different types of mali-
cious packets can be used by the CSOCs to defend against
the evolving adversarial attacks.

ADVERSARIAL NETWORK PACKET
GENERATION FRAMEWORK: DEEP

PACKGEN
The objective of our study is to develop a framework for
generating adversarial network packets that can bypass ML-
based NIDS while maintaining functionality for communi-
cation. Our proposed framework, named Deep PackGen, il-
lustrated in Figure 1, comprises of three main components:
data set creation, packet classification model development,
and adversarial network packet generation. We begin by de-
scribing the process of creating and labeling network traf-
fic data, followed by training and evaluating packet classi-
fication models. Finally, we present a DRL model trained
to generate adversarial network packets by interacting with
several packet classification models. We explain the step-
wise dataset creation process in the supplementary materi-
als.

Data Set Creation
While much research has been conducted on developing dif-
ferent ML models for network traffic classification, most
of it relies on the NIDS (such as Zeek, Snort, and Secu-
rity Onion) or the NetFlow tools (such as Wireshark and
CICFlowmeter) for compiling network packet information
to obtain features for training the models. These methods
have several limitations as follows: (i) NIDS and NetFlow
tools generate features based on predefined rules or signa-
tures, which makes it difficult to reproduce and compare re-
sults across different studies; (ii) these approaches often do
not incorporate raw payload information, which can make
it hard to detect attacks that are embedded in packet pay-
loads; (iii) flow-based features are extracted by analyzing
network traffic over a period of time, which makes it dif-
ficult to detect anomalies in real-time; and (iv) rule-based
and signature-based feature extraction approaches can fail
when encountering novel attacks without signatures. To ad-
dress these limitations, recent research studies have focused
on using raw packet data to train ML-based NIDS (Lotfol-
lahi et al. 2020; De Lucia et al. 2021; Bierbrauer et al. 2023;
Cheng et al. 2021). These studies use bidirectional data to
train their ML models. However, an adversary can only con-
trol the network packets being sent from one direction (i.e.,
from the source). Hence, in this study, we create a data set
comprising raw packet data with a unidirectional flow orig-
inating from the source. The packet data from the unidirec-

Table 1: Summary of recent literature on adversarial sample generation

Author Year Data Set Feature Attacker
Knowledge Algorithm

Rigaki et al. (Rigaki 2017) 2017 NSL KDD Flow-based White-box
Fast Gradient Sign
Method (FGSM), Jacobian-based
Saliency Map Attack (JSMA)

Wang et al. (Wang 2018) 2018 NSL KDD Flow-based White-box FGSM, JSMA, Deepfool,
Carlini Wagner (CW)

Zhang et al. (Zhang, Costa-Pérez, and Patras 2020) 2020 CICIDS-2018 Flow-based White-box Boundary Attack, Pointwise
Attack, Hopskipjump Attack

Apruzzese et al. (Apruzzese et al. 2020) 2020 CTU, BOTNET Flow-based Black-box Deep Reinforcement Learning

Alhajjar et al. (Alhajjar, Maxwell, and Bastian 2021) 2020 NSL-KDD,
USNW-NB15 Flow-based Gray-box

Generative Adversarial
Network (GAN), Genetic
Algorithm (GA), Particle Swarm
Optimization

Schneider et al. (Schneider, Aspinall, and Bastian 2021) 2021 NSL-KDD Flow-based White-box
Projected Gradient Descent, GA,
Particle Swarm Optimization,
GAN

Chernikova et al. (Chernikova and Oprea 2022) 2022 CTU 13 Flow-based Black-box Projected Gradient Descent, CW

Zhang et al. (Zhang et al. 2022) 2022 NSL-KDD,
UNSW-NB15 Flow-based Gray-box GAN

Sheatslet et al. (Sheatsley et al. 2022) 2022 NSL-KDD,
UNSW-NB15 Flow-based White-box Adaptive JSMA,

Histogram Sketch Generation
Homoliak et al. (Homoliak et al. 2018) 2018 ASNM-NBPO Packet-based Gray-box Tools like NetEM, Metasploit
Hashemi et al. (Hashemi, Cusack, and Keller 2019) 2019 CICIDS-2018 Packet-based White-box Trial and Error
Kuppa et al. (Kuppa et al. 2019) 2019 CICIDS-2018 Packet-based Gray-box Manifold Approximation

Han et al. (Han et al. 2021) 2021 Kitsune,
CICIDS-2017 Packet-based Gray-box GAN

Sharon et al. (Sharon et al. 2022) 2021 Kitsune,
CICIDS-2017 Packet-based Black-box Long Short-Term Memory-based

tional flows is used to train the ML models and to generate
adversarial samples (network packets).

Packet Classification Model Development
An adversary may not have complete knowledge of the de-
fender’s model. Hence, an adversary will need a substitute
for the defender’s ML-based NIDS to generate and evaluate
the adversarial samples. We propose an ensemble model as a
surrogate for the defender’s model for training the adversar-
ial agent. An ensemble model consists of multiple estimators
(ML models), making the classifier robust in identifying ma-
licious packets. The data set created using the first compo-
nent of this framework is split into training and testing data
sets. Various linear, tree-based, and non-linear ML models
are then developed using the training data set and they are
evaluated using the testing data set. The selection process
of the estimators for this ensemble is described as follows.
Given a large set of estimators E, in which each estimator is
represented as Fm(.), where m ∈ E, then the best set of es-
timators, M , is selected based on their performance metric
values. F ∗

m(.) represents the estimator with optimal parame-
ters for which its loss function value, L(.), is minimum, i.e.,

θ∗ = argminθL(θ, x, y) (1)

where, θ represents the model parameters, x ∈ X is the
training data, y ∈ Y is the target value, and L(.) measures
how far the predictions are from the target value. Finally, the
top |M | number of classifiers are selected in the ensemble,
representing the defender’s ML-based NIDS, shown as fol-
lows

F ∗
m(.) ∀ m ∈ M (2)

Adversarial Sample Generation
Problem Definition Our aim is to develop a methodology
to generate malicious network packets that can fool the de-
fender’s ML-based NIDS. To achieve this, an original ma-
licious packet is perturbed to camouflage it as benign traf-
fic. Unlike the problem of applying unconstrained pertur-
bations to an image to fool a computer vision-based classi-
fier (Wang, Cho, and Yoon 2020), in this problem, the per-
turbations are constrained by the requirement to maintain the
packet’s maliciousness and functionality.

An original malicious packet, xoriginal, is modified by
applying perturbation(s), δ, using a perturbation function,
P (.). These perturbations must belong to a set of all valid
perturbations, ∆, that do not impede the capability of the
packet. A perturbed sample, xp, can be defined as

xp = P (xoriginal, δ) (3)

δ ∈ ∆ (4)

Note that many perturbed samples can be obtained by apply-
ing different δ from this set of valid perturbations, resulting
in a large set of perturbed samples, Xp. However, a success-
ful adversarial sample, xbenign

p , is the malicious and func-
tional network packet in Xp that is able to bypass the de-
fender’s model by getting misclassified as benign. This can
be formally defined as

xbenign
p = argmaxxp∈Xp

L(θ∗, xp, y) (5)

Figure 1: Deep PackGen framework for adversarial network
packet generation

Problem Formulation Generating an adversarial sample
by making perturbations to a network packet can be posed as
a sequential decision-making problem. An adversary starts
with an original malicious network packet and makes se-
quential perturbations, as indicated in Equation 3. At each
iteration, the packet is modified, and this perturbed sample
is passed through the packet classification model to check
if it successfully evades its classification decision bound-
ary. The iterative process continues until either a success-
ful adversarial sample is attained (satisfying Equation 5) or
the maximum number of iterations is reached. The objective
is to learn the (near-)optimal set of perturbations, given an
original malicious network packet, to generate an adversar-
ial sample. This sequential decision-making problem can be
formulated as a Markov decision process (MDP). The key
elements of the MDP formulation are as follows.
• State, st, is a representation of the information avail-

able at time t. The state space consists of the normalized
byte values of the network packet obtained from the data
set created in the first component of this framework and
the classification label (0 for benign and 1 for malicious)
given by the defender’s model. Each packet contains N
number of features, which makes the state space N + 1
dimensional.

• Action, at, represents the perturbation(s), δ ∈ ∆, applied
to the network packet at time t. The number of action
choices is limited to |∆| and the choices are discrete.

• Reward, rt, is the measure of effectiveness of taking ac-
tion at in state st. The reward signal helps the adversary
in quantifying the effect of the action taken in a partic-
ular state. We engineer a novel reward function to guide
the adversary towards learning an optimal policy of mak-
ing perturbations, given the original malicious network
packet. The reward function is defined as follows:

rt(st, at) =

{
r− if ym ̸= benign ∀m ∈ M

k ∗ r+ otherwise
(6)

where, k is the number of classifiers in the ensemble that
were successfully evaded by the perturbed network sam-
ple. This function generates both positive and negative
rewards. A positive reward is obtained when the per-
turbed sample evades one or more classifiers in the en-
semble model. The reward value is directly proportional
to the number of classifiers it is able to fool by getting
misclassified as a benign sample. A small negative re-
ward (r−) is incurred each time the perturbed sample
fails to evade any of the classifiers in the ensemble model.

DRL-based Solution Approach The network packet per-
turbation problem has a large state and action space. To over-
come the issue of calculating and storing the action-value
(Q value) for all state-action pairs using a conventional RL
approach, we use a deep neural network architecture to esti-
mate these values. An adversary, in the form of a DRL agent,
is trained using the malicious samples from the data set cre-
ated in the first component of the framework. It is to be noted
that the DRL agent has no visibility of the ML model’s archi-
tecture, parameter values, or loss function during the training
and testing phases. Figure 1 shows the training and testing
phases of the DRL agent, which are explained next.

DRL Training Phase Figure 2 shows the training phase
of the DRL agent, which comprises interactions between the
DRL agent and the training environment. The training envi-
ronment for the DRL agent is designed with the surrogate for
the real-world ML-based NIDS. The environment contains
the transformed and labeled network packet data of various
attack types, and the pre-trained classifiers for the surrogate
ensemble model created in the first and second components
of this framework, respectively. For each attack type, the
DRL agent obtains a randomly picked data sample and pre-
scribes the perturbation actions (details are explained in the
next paragraph). The environment allows for the implemen-
tation of these actions, resulting in a one-step transition of
the system state, generating a perturbed sample. Rewards are
calculated based on the perturbed packet’s ability to evade
an ensemble of classifiers. This process continues until the
stopping condition is reached, which is either the adversarial
sample is successful in being misclassified as benign traffic
or the maximum number of time-steps is reached. The steps
for simulating the environment are outlined in Algorithm 1.

A DRL agent interacts with the training environment and
learns to generate adversarial packets by following a set
of rules called a policy. The agent’s decisions are based
on a sequence of states, actions, and rewards, which are
determined by the training environment. The agent is re-
warded based on the ability of the generated packets to evade
the surrogate model. We use DRL with double Q-Learning
(DDQN) (Van Hasselt, Guez, and Silver 2016) to train the
agent. DDQN is a single architecture deep Q-network that
is suitable for problems with a discrete action space. The
notable difference between DDQN and traditional deep Q-
learning is that DDQN decouples the action selection and
evaluation processes by using an additional network. This
helps to reduce the overestimation error that occurs in tradi-
tional Q-learning. The target value calculation is as follows:

Rt = rt + γQ(st+1,a Q(st+1, a; θt); θ
′
t) (7)

Figure 2: Training phase of DRL agent

The policy network weights (θt) are used to select the ac-
tion, while the target network weights (θ′t) are used to evalu-
ate it. Algorithm 2 shows the steps in training the DRL algo-
rithm. The algorithm interacts with the environment (Algo-
rithm 1) to learn the near-optimal policy for perturbing dif-
ferent types of packets. The learning process continues until
a pre-determined maximum number of episodes is reached.
Multiple DRL agents are trained, one for each attack class
in the data set.

DRL Testing Phase The trained DRL agents are tested
against different ML models in the testing phase of the ad-
versarial sample generation component of the framework, as
depicted in Figure 2 of supplementary material. The neural
network architecture of the agent uses the learned weights
(θ) obtained at the conclusion of the training phase (see Al-
gorithm 2). The trained DRL agent operates without any re-
ward signal during this phase and its actions are based on its
learned policy. During the testing phase of the DRL agent
adversarial samples are generated from testing samples that
were not seen during the training phase. This allows for an
assessment of the agent’s performance on various classifiers,
including those that were not used in the DRL training envi-
ronment. The performance of each agent is measured using
the adversarial success rate (ASR) metric, which is defined
as follows.

ASR =
FNp − FNoriginal

TP
(8)

where FNp denotes the total number of samples that
were misclassified after perturbation by the DRL agent,
FNoriginal is the total number of samples that were in-
correctly classified before perturbation, and TP is the total
number of samples that the ML model correctly classified as
malicious before perturbation. The ASR does not take into
account packets that fool the classifier prior to perturbation
(i.e., FNoriginal), thereby giving an accurate performance
measurement for each agent.

NUMERICAL EXPERIMENTS
In this section, we outline the numerical experiments per-
formed to evaluate our Deep PackGen methodology. We first

discuss the experimental data, followed by the creation of
ML-based packet classification models. Finally, we delve
into the hyperparameters employed during the training and
testing of the DRL agent. The goal is to train multiple DRL
agents, each specifically designed to generate packets for a
unique attack type, by interacting with a surrogate model
specialized in identifying that type of attack. To achieve this,
we generated several data sets for training and testing of the
DRL agents.

Data Description
We conducted numerical experiments using raw PCAP files
from two popular network intrusion detection data sets:
CICIDS-2017 (Sharafaldin, Habibi Lashkari, and Ghorbani
2019) and CICIDS-2018 (Sharafaldin, Lashkari, and Ghor-
bani 2018). These data sets contain both benign and at-
tack communications, and provide pragmatic representation
of modern network traffic compared to older data sets like
NSL-KDD and KDD-CUP (Hindy et al. 2020). Addition-
ally, the availability of raw PCAP files for the CICIDS
data sets reduces dependency on extracted flow level fea-
tures (Rosenberg et al. 2021b). CICIDS-2017 consists of
PCAP files for five consecutive days (Monday to Friday),
each with different attack types and sizes. We processed
these files to generate the data set, as explained in Section
3. Since the Heartbleed and Botnet attack types have too
few instances to train ML models, we excluded them from
our experiments. As discussed earlier, we only considered
forward packets in our data set as an adversary is in control
(generation and manipulation) of packets that originate from
its source. We extracted payload bytes from each packet and
represent each byte as a feature in this data set. We converted
hexadecimal numbers to decimal numbers and normalized
each feature value to a range of 0-1, where the minimum
and maximum feature values were 0 and 255, respectively.
In total, there were 1525 features.

We utilized the CICIDS-2017 data set for training and
testing our framework as follows. We divided the data into
different attack types, including samples from the benign
category. For each attack type, we split the data into three
parts: 60% of data for training the DRL agent and build-
ing the surrogate model for the training phase, 30% of data
for building other packet classification models for testing the
trained DRL agent, and 10% of data for generating adversar-
ial samples and performing evaluation in the testing phase.
In the rest of the paper, we will refer to them as training, ML
model testing 1, and DRL agent testing 1 data sets, respec-
tively, for each attack type.

Further, to evaluate the performance of the trained agents
on different network traffic data, we utilized the CICIDS-
2018 data set.We extracted packets for the various attack
types, including DoS, Web Attack, Infiltration, Port Scan,
and DDoS from these files. We split the data for each attack
type into two parts: 70% of data was allocated for building
the ML models for the detection of the respective attack type
in the testing phase and the remaining 30% of data was uti-
lized to measure the adversarial success rate of the respec-
tive trained DRL agent. We refer to these two parts as ML
model testing 2 and DRL agent testing 2 data sets, respec-

tively. Note that the DRL agents were not trained with the
CICIDS-2018 data samples.

Packet Classification Model Creation
We developed different sets of ML models for both training
and testing the DRL agents. Data sets were carefully pre-
pared for developing the surrogate (training phase) and the
testing (testing phase) models. ML models in the training
phase were developed using the training data. In contrast,
those used for testing the trained DRL agents were devel-
oped using either the ML model testing 1 or ML model test-
ing 2 data sets. A DRL agent was trained to perturb packets
for each attack type. To effectively train the agent to deceive
the classifier’s decision boundary, we used a surrogate model
specializing in that respective attack type in the agent’s train-
ing environment. For example, if the DRL agent was being
trained on perturbing the packets of a Port Scan attack, then
the surrogate model was trained with the forward packets
extracted from the network flow data of the same attack.

In the training phase, we selected an ensemble of ML
models to act as a surrogate model. We randomly sampled
80% of the training data to train various ML models, in-
cluding linear, tree-based, and nonlinear classification mod-
els. The performances of all these models on the remaining
20% of the training data were comparable across each attack
type, with the majority of them having a superior accuracy of
around 99%. We selected one model from each of the three
types of classifiers in the ensemble: logistic regression (LR),
decision tree (DT), and multi-layer perceptron (MLP).

Similarly, ML models were developed for the testing
phase. Two sets of models were trained: one using the ML
model testing 1 data set and another using the ML model
testing 2 data set. Note that both these data sets contain pre-
viously unseen samples by the DRL agents. In addition, the
latter contains samples from a different network than that
used to train the agents.

Adversarial DRL Agent Training
The state space of the DRL agent consists of the 1525 fea-
tures extracted from the network packet and its classifica-
tion label. As discussed in the data set creation component
of the framework, these features are the normalized val-
ues of the bytes pertaining to different TCP/IP header and
segment information. Our focus in this study is to find the
(near-)optimal set of perturbations that can be applied to
a given malicious network packet to generate a successful
adversarial sample, while maintaining the functionality of
communication. To show the effectiveness of our methodol-
ogy, we selected a set of valid perturbations (∆) based on
domain knowledge, literature studies (Nasr, Bahramali, and
Houmansadr 2021), (Sadeghzadeh, Shiravi, and Jalili 2021),
(Yan et al. 2019), (Guo et al. 2021), (Apruzzese et al. 2020),
(Huang et al. 2020), and our discussions with the subject
matter experts (security personnel) at a collaborating CSOC.
Below is a sample list of perturbations, among others, that
were selected as a part of the agent’s action space along with
their descriptions and impacts.

• Modifying the fragmentation bytes from do not fragment

to do fragment. This perturbation can be applied to pack-
ets where fragmentation is turned off.

• Modifying the fragmentation bytes from do not fragment
to more fragment. This perturbation can be applied to
packets where fragmentation is turned on or off.

• Increasing or decreasing (+/- 1) the TTL byte value. Any
valid perturbation to this byte will result in a final TTL
value between 1-255.

• Increasing or decreasing (+/- 1) the window size bytes.
Any valid perturbation to these bytes will result in a final
window size value between 1-65535.

• Adding, increasing, or decreasing the maximum segment
size (MSS) value. This perturbation can only be applied
to SYN and SYN-ACK packets.

• Adding, increasing, or decreasing the window scale
value. This perturbation can only be applied to SYN and
SYN-ACK packets.

• Adding segment information. For this perturbation, we
selected the most commonly occurring TCP payload in-
formation from the benign traffic in the data set.

We tried various reward schemes with different values of
positive and negative rewards in our reward function (see
Equation 6). We obtained the best results, in terms of higher
average reward value and a faster convergence with the re-
ward term values as follows. We assigned a value of 200 to
r+ and -2 to r−. If the perturbed sample successfully evaded
all three classifiers in the ensemble model, then rt = 600
was passed on to the DRL agent. If the sample successfully
evaded only two (one) of the three classifiers, then the DRL
agent received a reward of 400 (200). However, if the sample
failed to evade any of the classifiers, then a negative reward
of rt = −2 was assigned to the agent at time t.

RESULTS AND ANALYSIS
This section discusses the results of the conducted experi-
ments and their analysis. First, we present the performances
of the trained DRL agents against the various testing models.
We then present an analysis of the agents’ decision-making.
Finally, we delve into a deeper statistical analysis of the suc-
cessful adversarial samples.

Performance Evaluation of the Trained DRL
Agents
We evaluate the performance of the trained agents using the
DRL agent testing 1 (CICIDS-2017) data set. We quantify
their performance by calculating the rate of adversarial sam-
ples that successfully bypass the classification boundary of
each testing model by getting misclassified as benign. We
use the ASR metric (see Equation 8) to report each agent’s
performance. Note that in calculating this performance met-
ric value, the packets that fool the classifier prior to per-
turbation (i.e., FNoriginal) are disregarded (subtracted) to
accurately measure the effectiveness of the agent’s learned
policy.

Table 2 presents the ASR values for the five trained DRL
agents (one for each attack type) on five testing models
trained using the ML model testing 1 (CICIDS-2017) data

Table 2: Adversarial success rate (ASR) of DRL agents on
CICIDS-2017 data

Attack Type
Testing 1 Models

DT RF MLP DNN SVM

DoS 0.969 0.539 0.472 0.786 0.272
DDoS 0.965 0.965 0.990 0.679 0.742

Web Attack 0.995 0.656 0.654 0.330 0.322
Port Scan 0.995 0.985 0.979 0.314 0.982
Infiltration 0.998 0.324 0.209 0.158 0.323

set. The average ASR value obtained across all DRL agents
and testing models was 0.664. The DT classifier was found
to be the easiest to fool by all agents, with ASR values
greater than 0.96 (as shown in the DT column of Table 2).
The DRL agents also performed well against the RF clas-
sifier, a tree-based ensemble model, with an average ASR
value of 0.694. In particular, the DDoS and Port Scan agents
had similar success rates against both DT and RF classifiers.
Some DRL agents, such as Infiltration and Web Attack, had
lower success rates against more complex nonlinear mod-
els, such as DNN and SVM classifiers. However, low ASR
in some experiments doesn’t undermine the effectiveness of
the framework since the ASR is recorded over multiple at-
tack flows. In general, we observed that simpler models were
easier for the DRL agents to evade the decision boundary
through adversarial sample generation. The DDoS and Port
Scan agents performed the best against all types of mod-
els, while the perturbed packets generated by the Infiltration
agent had a lower success rate in fooling the nonlinear clas-
sifiers.

Next, we evaluate the transferability of the learned poli-
cies of the DRL agents to a different environment (testing 2).
To accomplish this, we employ the CICIDS-2018 data set.
The five testing models are trained using the ML model test-
ing 2 data samples. The DRL agents, which were trained us-
ing the CICIDS-2017 data, are subjected to malicious sam-
ples from the CICIDS-2018 data set (i.e., DRL agent test-
ing 2 data samples). Note that there are no Port Scan attack
samples in this data set, so we present the evaluation of the
other four DRL agents in this environment. Table 3 shows
the transferability evaluation of these agents using the ASR
metric. Overall, the agents successfully perturb malicious
samples that evade the classification boundaries of the vari-
ous testing models in this new environment, with an average
ASR value of 0.398. We observed that the DRL agents were
more successful in fooling the tree-based models than the
nonlinear models. Notably, the DDoS agent performed the
best, consistent with the findings of the testing 1 environ-
ment. Figure 3 depicts the average ASR values of the DRL
agents in both testing 1 and testing 2 environments, high-
lighting their performance in generating successful adver-
sarial samples.

Performance Analysis of the Agents
We now assess the effectiveness of the DRL agents by exam-
ining two key aspects. First, we analyze why packets of cer-

Table 3: Transferability evaluation (ASR) of DRL agents on
CICIDS-2018 data

Attack Type
Testing 2 Models

DT RF MLP DNN SVM

DoS 0.506 0.455 0.355 0.225 0.104
DDoS 0.657 0.810 0.372 0.679 0.372

Web Attack 0.312 0.298 0.283 0.293 0.254
Infiltration 0.293 0.354 0.590 0.410 0.340

Figure 3: Average ASR values of DRL agents in different
testing environments

tain attack types were easier to perturb than others. Second,
we examine the (near-)optimal actions learned by the agents
and their relevance to the decision boundary of the classi-
fiers. To accomplish this, we implemented the following two
steps. (i) We calculated the mean and standard deviation val-
ues of the first 500 normalized features from the network
packets of each attack type in the CICIDS-2017 data set.
These values were then compared with those obtained from
the benign packets to determine similarity (or dissimilarity)
in feature values. This information is visualized in Figure 4,
which displays the plots for the five attack types. (ii) We used
Shapley Additive exPlanations (SHAP) (Lundberg and Lee
2017) to identify important features that determine the clas-
sification boundary for accurately detecting each attack type
in the testing models. We analyze the agent’s performance
and action choices in relation to these key features and the
ASR values reported in Table 2.

From Figure 4 and Table 2, we can infer that attack types
with packet feature values similar to those of the benign
class are more susceptible to successful perturbation, allow-
ing evasion of the classifiers. Specifically, plots (b) and (e)
in Figure 4 show that the malicious packets from DDoS and
Port Scan attacks, respectively, have similar feature values
as the benign packets, resulting in higher ASR values for the
DRL agents trained to perturb them, as seen in Table 2. Next,
we look at the agent’s actions and important features of the
classifier, and analyze how that impacted the ASR.

The actions increasing the TTL values (directly affect-
ing IP header byte numbers 9, 11, and 12) and adding pay-
load (segment information), were amongst the top actions

Figure 4: Mean and +/-1 standard deviation values for the
first 500 features of benign and malicious packets: (a) DoS,
(b) DDoS, (c) Web Attack, (d) Infiltration, and (e) Port Scan

performed by the Port Scan agent during testing. We used
the SHAP values of the classifiers to determine any correla-
tion between the agent’s actions and the important feature(s)
governing their decision boundaries. Notably, IP header byte
number 9 has the most significant contribution towards de-
ciding the decision boundary for both models, which was
also learned by the Port Scan agent. We present the details
related to SHAP values observed for different features in the
supplementary materials.

The DRL agents’ performance analysis reveals that some
attack types were less successful than others, as shown in Ta-
ble 2. The Infiltration attack type had the lowest success rate,
likely due to its dissimilar feature values compared to the
benign packets (see Figure 4 (d)). Note that the Infiltration
packets have unique feature values in bytes 61-1525, repre-
senting segment information, making it challenging to per-
turb these packets by modifying these features. The SHAP
analysis shows that the window size feature is the top con-
tributor to the decision boundary for the RF classifier, which
explains why perturbing window size value is amongst the
top action choices for the Infiltration agent. These examples,
amongst others, demonstrate that the DRL agents learned
which key feature(s) to perturb to evade the classification
boundary.

Notably, the early part of the TCP segment plays an im-
portant role in determining the MLP model’s classification
boundary. However, the early TCP segment information is
not mutable for this attack type as that would compromise
the functionality of the packet. Hence, the agent relied on
adding payload (dead bytes) to these packets as an action
choice and succeeded in some cases. The difference in the
important features between classifiers also explains the In-
filtration agent’s relatively higher success rate against the
RF classifier compared to the MLP classifier. A similar per-
formance analysis was conducted for the other DRL agents
across all the classifiers. We found a similar correlation be-
tween the agent’s policy, the important features of the clas-

sifier, and the respective ASR.

CONCLUSIONS AND FUTURE
DIRECTIONS

In this paper we presented the development of a general-
ized methodology for creating adversarial network pack-
ets that can evade ML-based NIDS. The methodology is
aimed at finding (near-)optimal perturbations that can be
made to malicious network packets while evading detec-
tion and retaining functionality for communication. We
posed this constrained packet perturbation problem as a
sequential decision-making problem and solved it using
a DRL approach. The DRL-enabled solution framework,
Deep PackGen, consists of three main components, namely
packet-based data set creation, ML-based packet classifica-
tion model development, and DRL-based adversarial sam-
ple generation. Raw packet capture files from publicly avail-
able data were used to conduct the experiments. The frame-
work generated curated data sets containing forward net-
work packets, which were used to train and test five dif-
ferent types of DRL agents. Each agent was tailored to a
specific attack type and evaluated on various classifiers. Re-
sults show that the Deep PackGen framework is successful
in producing adversarial packets with an average ASR of
66.4% across all the classifiers in the network environment
in which they were trained. The experimental results also
show that the trained DRL agents produce an average ASR
of 39.8% across various tree-based and nonlinear models in
a different network environment.

Below, we present a summary of the insights obtained
from this study that can guide future investigations.

1. The DRL agents have a higher success rate in evad-
ing tree-based packet classification models like DT and
RF compared to nonlinear classifiers such as SVM and
DNN.

2. The success rate of the DRL agents in generating ad-
versarial samples is directly related to the key features
that govern the decision boundary of the classifier and
whether these features could be changed without disrupt-
ing the packet’s communication function.

3. Attacks that have feature values similar to those of be-
nign traffic, such as DDoS and Port Scan, are more
vulnerable to successful perturbation by an adversarial
agent.

4. The policies learned by the DRL-agents are transferable
to new network environments.

5. The more complex the decision boundary of the classi-
fier, the larger the magnitude of the perturbation required
for evasion, resulting in out-of-distribution samples.

As regards future work, the Deep PackGen framework
could be expanded to include more attack types and can
be evaluated against different types of NIDS. Our method-
ology has shown encouraging results for generating OOD
samples, which can be further investigated by the cyberse-
curity research community to model adversarial evolution
and strengthen defenses against new types of attacks.

Acknowledgement
This work was supported in part by the U.S. Mili-
tary Academy (USMA) under Cooperative Agreement No.
W911NF-22-2-0045, as well as the U.S. Army Combat Ca-
pabilities Development Command C5ISR Center under Sup-
port Agreement No. USMA21056. The views and conclu-
sions expressed in this paper are those of the authors and do
not reflect the official policy or position of the U.S. Military
Academy, U.S. Army, U.S. Department of Defense, or U.S.
Government.

References
Alhajjar, E.; Maxwell, P.; and Bastian, N. 2021. Adversar-
ial machine learning in network intrusion detection systems.
Expert Systems with Applications, 186: 115782.

Apruzzese, G.; Andreolini, M.; Marchetti, M.; Venturi, A.;
and Colajanni, M. 2020. Deep reinforcement adversarial
learning against botnet evasion attacks. IEEE Transactions
on Network and Service Management, 17(4): 1975–1987.

Bierbrauer, D. A.; De Lucia, M. J.; Reddy, K.; Maxwell, P.;
and Bastian, N. D. 2023. Transfer learning for raw net-
work traffic detection. Expert Systems with Applications,
211: 118641.

Cheng, Q.; Zhou, S.; Shen, Y.; Kong, D.; and Wu, C. 2021.
Packet-level adversarial network traffic crafting using se-
quence generative adversarial networks. arXiv preprint
arXiv:2103.04794.

Chernikova, A.; and Oprea, A. 2022. Fence: Feasible eva-
sion attacks on neural networks in constrained environ-
ments. ACM Transactions on Privacy and Security, 25(4):
1–34.

De Lucia, M. J.; Maxwell, P. E.; Bastian, N. D.; Swami,
A.; Jalaian, B.; and Leslie, N. 2021. Machine learning raw
network traffic detection. In Artificial Intelligence and Ma-
chine Learning for Multi-Domain Operations Applications
III, volume 11746, 185–194. SPIE.

Guo, S.; Zhao, J.; Li, X.; Duan, J.; Mu, D.; and Jing, X.
2021. A black-box attack method against machine-learning-
based anomaly network flow detection models. Security and
Communication Networks, 2021: 1–13.

Han, D.; Wang, Z.; Zhong, Y.; Chen, W.; Yang, J.; Lu, S.;
Shi, X.; and Yin, X. 2021. Evaluating and improving adver-
sarial robustness of machine learning-based network intru-
sion detectors. IEEE Journal on Selected Areas in Commu-
nications, 39(8): 2632–2647.

Hashemi, M. J.; Cusack, G.; and Keller, E. 2019. Towards
evaluation of nidss in adversarial setting. In Proceedings
of the 3rd ACM CoNEXT Workshop on Big DAta, Machine
Learning and Artificial Intelligence for Data Communica-
tion Networks, 14–21.

Hindy, H.; Brosset, D.; Bayne, E.; Seeam, A. K.; Tachtatzis,
C.; Atkinson, R.; and Bellekens, X. 2020. A taxonomy of
network threats and the effect of current datasets on intru-
sion detection systems. IEEE Access, 8: 104650–104675.

Homoliak, I.; Teknos, M.; Ochoa, M.; Breitenbacher, D.;
Hosseini, S.; and Hanacek, P. 2018. Improving network in-
trusion detection classifiers by non-payload-based exploit-
independent obfuscations: An adversarial approach. arXiv
preprint arXiv:1805.02684.
Huang, W.; Peng, X.; Shi, Z.; and Ma, Y. 2020. Adversarial
attack against LSTM-based DDoS intrusion detection sys-
tem. In 2020 IEEE 32nd International Conference on Tools
with Artificial Intelligence (ICTAI), 686–693. IEEE.
Kuppa, A.; Grzonkowski, S.; Asghar, M. R.; and Le-Khac,
N.-A. 2019. Black box attacks on deep anomaly detec-
tors. In Proceedings of the 14th international conference
on availability, reliability and security, 1–10.
Lotfollahi, M.; Jafari Siavoshani, M.; Shirali Hossein Zade,
R.; and Saberian, M. 2020. Deep packet: A novel approach
for encrypted traffic classification using deep learning. Soft
Computing, 24(3): 1999–2012.
Lundberg, S. M.; and Lee, S.-I. 2017. A unified approach
to interpreting model predictions. Advances in neural infor-
mation processing systems, 30.
Nasr, M.; Bahramali, A.; and Houmansadr, A. 2021. De-
feating DNN-Based Traffic Analysis Systems in Real-Time
With Blind Adversarial Perturbations. In USENIX Security
Symposium, 2705–2722.
Pierazzi, F.; Pendlebury, F.; Cortellazzi, J.; and Cavallaro, L.
2020. Intriguing properties of adversarial ml attacks in the
problem space. In 2020 IEEE symposium on security and
privacy (SP), 1332–1349. IEEE.
Rigaki, M. 2017. Adversarial deep learning against intrusion
detection classifiers.
Rosenberg, I.; Shabtai, A.; Elovici, Y.; and Rokach, L.
2021a. Adversarial machine learning attacks and defense
methods in the cyber security domain. ACM Computing Sur-
veys (CSUR), 54(5): 1–36.
Rosenberg, I.; Shabtai, A.; Elovici, Y.; and Rokach, L.
2021b. Adversarial machine learning attacks and defense
methods in the cyber security domain. ACM Computing Sur-
veys (CSUR), 54(5): 1–36.
Sadeghzadeh, A. M.; Shiravi, S.; and Jalili, R. 2021. Ad-
versarial network traffic: Towards evaluating the robustness
of deep-learning-based network traffic classification. IEEE
Transactions on Network and Service Management, 18(2):
1962–1976.
Schneider, M.; Aspinall, D.; and Bastian, N. D. 2021. Eval-
uating model robustness to adversarial samples in network
intrusion detection. In 2021 IEEE International Conference
on Big Data (Big Data), 3343–3352. IEEE.
Sharafaldin, I.; Habibi Lashkari, A.; and Ghorbani, A. A.
2019. A detailed analysis of the cicids2017 data set. In In-
formation Systems Security and Privacy: 4th International
Conference, ICISSP 2018, Funchal-Madeira, Portugal, Jan-
uary 22-24, 2018, Revised Selected Papers 4, 172–188.
Springer.
Sharafaldin, I.; Lashkari, A. H.; and Ghorbani, A. A. 2018.
Toward generating a new intrusion detection dataset and in-
trusion traffic characterization. ICISSp, 1: 108–116.

Sharon, Y.; Berend, D.; Liu, Y.; Shabtai, A.; and Elovici, Y.
2022. Tantra: Timing-based adversarial network traffic re-
shaping attack. IEEE Transactions on Information Forensics
and Security, 17: 3225–3237.
Sheatsley, R.; Papernot, N.; Weisman, M. J.; Verma, G.; and
McDaniel, P. 2022. Adversarial examples for network in-
trusion detection systems. Journal of Computer Security,
(Preprint): 1–26.
Van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep rein-
forcement learning with double q-learning. In Proceedings
of the AAAI conference on artificial intelligence, volume 30.
Wang, L.; Cho, W.; and Yoon, K.-J. 2020. Deceiving image-
to-image translation networks for autonomous driving with
adversarial perturbations. IEEE Robotics and Automation
Letters, 5(2): 1421–1428.
Wang, Z. 2018. Deep learning-based intrusion detection
with adversaries. IEEE Access, 6: 38367–38384.
Yan, Q.; Wang, M.; Huang, W.; Luo, X.; and Yu, F. R. 2019.
Automatically synthesizing DoS attack traces using genera-
tive adversarial networks. International journal of machine
learning and cybernetics, 10(12): 3387–3396.
Zhang, C.; Costa-Pérez, X.; and Patras, P. 2020. Tiki-taka:
Attacking and defending deep learning-based intrusion de-
tection systems. In Proceedings of the 2020 ACM SIGSAC
Conference on Cloud Computing Security Workshop, 27–39.
Zhang, R.; Luo, S.; Pan, L.; Hao, J.; and Zhang, J. 2022.
Generating adversarial examples via enhancing latent spatial
features of benign traffic and preserving malicious functions.
Neurocomputing, 490: 413–430.

