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Abstract

Recent works identified a gap between research and practice
in artificial intelligence security: threats studied in academia
do not always reflect practical use and real-world security
risks. For example, while models are often studied in isola-
tion, they form part of larger ML pipelines in practice. Lat-
est works also brought forward that adversarial manipulations
introduced by academic attacks are impractical. In this short
paper, we take a first step toward describing this disparity. To
this end, we revisit the threat models of three attacks in AI se-
curity research and match them to AI usage in practice via a
survey with 271 industrial practitioners. On the one hand, we
find that all existing threat models are indeed applicable. On
the other hand, there are also significant mismatches: research
is often too generous with the attacker, assuming access to in-
formation not frequently available in real-world settings. Our
paper is thus a call for action to study more practical threat
models in artificial intelligence security.

1 Introduction
A large body of academic work focuses on machine learning
(ML) security (Barreno et al. 2006; Biggio and Roli 2018;
Chen et al. 2017; Cinà et al. 2023; Dalvi et al. 2004; Gu,
Dolan-Gavitt, and Garg 2017; Ji, Zhang, and Wang 2017;
Oh, Schiele, and Fritz 2019; Papernot, McDaniel, and Good-
fellow 2016; Szegedy et al. 2014; Tramèr et al. 2016). Al-
though the attacks studied in these works have been estab-
lished, increasing criticism targets the threat models used.
For example, most academic papers focus on standalone
models (Chen et al. 2017; Dalvi et al. 2004; Gu, Dolan-
Gavitt, and Garg 2017; Ji, Zhang, and Wang 2017; Oh,
Schiele, and Fritz 2019; Papernot, McDaniel, and Goodfel-
low 2016; Szegedy et al. 2014; Tramèr et al. 2016), while
models in practice are generally embedded into pipelines or
larger systems (Evtimov et al. 2020; Bieringer et al. 2022).
In addition, it has been pointed out that attacks in practice
do currently not match the degree of complexity inherent
to academic publications (Apruzzese et al. 2022; Grosse
et al. 2023b). Also, the measurement of the attacker’s ma-
nipulations was deemed impractical (Gilmer et al. 2018;
Apruzzese et al. 2022), and the overall amount of data avail-
able to the attacker (Cinà et al. 2023; Grosse et al. 2023b).
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For example, backdoor attacks (Ji, Zhang, and Wang
2017; Cinà et al. 2023) require manipulating the training
data. Grosse et al. (2023b) reported cases of training data at-
tacks in the wild—yet it is unknown which fraction of com-
panies allow access to their training data. Thus, the number
of organizations vulnerable to poisoning attacks is, in prac-
tice, unknown. In addition, companies may only allow ac-
cess to a fraction of their data—another limiting factor for an
attack to succeed. As an example, consider a company where
1% of the data can be accessed by the attacker. Most aca-
demic attacks require access to more data (Cinà et al. 2023),
limiting their usefulness. Analogously, evasion attacks were
reported in the wild (Grosse et al. 2023b). Evasion requires
the submission of at least one perturbed test sample (Dalvi
et al. 2004; Szegedy et al. 2014). Yet the number of AI sys-
tems in practice where this is possible is again unknown.

These works illustrate individual mismatches and demon-
strate that some aspects of threat models are unaligned be-
tween research and practice. The underlying problem, an ab-
sence of knowledge on how AI is used in practice, is how-
ever still unaddressed. In other words, the underlying prob-
lem remains: whether researched threat models are actually
representative of AI usage in practice. In this work, we take
a first step towards measuring this mismatch of AI security
research and practice on both the attack level and beyond.

Contributions. In this short version of our long pa-
per (Grosse et al. 2023a), we focus on three commonly stud-
ied attacks: backdoors (Cinà et al. 2023), evasion or adver-
sarial examples (Dalvi et al. 2004; Szegedy et al. 2014), and
model stealing (Tramèr et al. 2016) and describe them in
Sect. 2. To match these threat models with real-world AI us-
age, we designed a questionnaire and recruited a sample of
271 industrial participants. Our results (Sect. 3) show that all
three analyzed attacks from academia are relevant in prac-
tice. However, in practice, access to models, queries, and
data follows an all-or-nothing principle, where existing aca-
demic threat models cover only a fraction of the cases. This
research gap does not only consist of too generous assump-
tions about access to training data and test queries. Instead,
in some cases where for example model stealing is possi-
ble, the model is public as well, superseding the attack in its
current threat modelling.

After revisiting the limitations of our approach (Sect. 4),
we discuss the implications of our study (Sect. 5). These go



Table 1: A summary of threat modeling for AI security. Be-
low, we list the attacker’s knowledge and capabilities. For
each attack, we denote which knowledge in terms of training
data (X,Y), test data (Xt,Yt), parameters (ω), and classifier’s
outputs (F (ω, x)) are required. Concerning capabilities, we
denote whether the attacker can alter training (x) or test (xt)
samples, labels of samples (y), or observe the output of the
model (F (ω, x)). ∗ indicates that either both marked or one
of two properties is required. For all properties, we denote
required ( ), sometimes required (G#), and not required (#).

Knowledge Capabilities

X,Y Xt,Yt ω x y xt F (ω, x)

Backdoor (Cinà et al. 2023)   G#  G#  #
Evasion (Mahmood et al. 2021) #  G# ∗ # #  ∗G# ∗

Model Stealing (Oliynyk et al. 2023) # G# # # # G#  

beyond the above-discussed shortcomings of existing, aca-
demic threat models. Implications relate also to current leg-
islative attempts like the EU AI Act that requires security
and vulnerability assessments of AI systems. We also set
previously low numbers of AI security incidents into con-
text and pave the way toward a deep understanding the secu-
rity of AI-based products in practice. We then review related
work (Sect. 6) and conclude our contributions (Sect. 7).

Remark. This work is not a finger-pointing exercise. So
far, AI security research has relied on best practices of se-
curity threat modeling, and we confirm that all 3 studied
settings are applicable in practice. However, we describe
unstudied settings hoping that we, as a community, can
progress together toward more practical research.

2 Methodology
In this section, we provide our terminology, the question-
naire and recruiting strategy, and the resulting sample. More
details can be found in Grosse et al. (2023a).

2.1 Terminology and Definitions
AI security studies the effect an attacker can have on an ex-
isting system or program. We, thus, first define the different
attacks and threat model components we consider. We sum-
marize all attacks’ threat models in Table 1. In this table, we
distinguish the knowledge (e.g., what the attacker knows)
and their capability (e.g., what they can affect or alter).

Backdoor attacks alter the training data, (samples and/or
labels), with the goal of implementing a backdoor pattern
that can be used at test time (Barreno et al. 2006; Cinà et al.
2023). Constraints are often formulated in terms of percent-
ages of training data that is altered.

Evasion attacks alter, at test time, the input data slightly
to change the output of the model (Dalvi et al. 2004;
Chakraborty et al. 2021). Constraints are often formulated
in terms of queries that can be submitted to the model when
no access to the model is given (black-box attacks).

Model stealing copies the model without the owner’s
consent by submitting tailored inputs to a model and observ-
ing the corresponding outputs (Tramèr et al. 2016; Oliynyk,
Mayer, and Rauber 2023). Analogously to evasion, con-

straints are often formulated in terms of query numbers that
can be submitted to the model.

2.2 Questionnaire and Recruiting
To understand AI security risks in practice, we opt for a
quantitative questionnaire. Although we focus on AI model
access patterns, we nonetheless query some demographic
information to compare to other samples (age, gender, ge-
ographic location, company size, industry area, team size,
and whether and how long the AI system was in production).
Afterward, we inquired about the accessibility of the partic-
ipants’ training and test data, the model, and model outputs
as well as how many queries could be submitted to a model.
We opted for an anonymous, unpaid questionnaire contain-
ing only multiple-choice questions. All fields could be left
blank to allow for confidentiality. The full questionnaire is
available in Grosse et al. (2023a).

After obtaining approval from our institution’s ethical re-
view board, we implemented the questionnaire using Red-
Cap (Harris et al. 2019) and conducted pretests. We then re-
cruited via Slack, personal email, and LinkedIn from April
2023 until July 2023, looking for AI engineers or personnel
working on a technical level with AI. We expected that these
were the most likely to know about model and data access.

2.3 Sample Description
Of our 271 participants, three-quarters (76%) were male,
18.1% female, and the remainder did not reply or dis-
close their gender. This ratio is comparable to similar stud-
ies (Grosse et al. 2023b) (71.2% male, 14.4% female) and
representative of the larger population of AI practition-
ers (Kaggle 2021) (82.2% male, 16.2% female).

Our participants’ age was primarily between 25 and 44
and matches similar studies (Grosse et al. 2023b; Kaggle
2021). To maintain anonymity, we asked for our partici-
pants’ locations based on dial codes. We received at least one
participant from each code area, our sample thus spans the
entire globe. Most participants were from Southern (19.9%)
and Northern Europe (28%) and North America (18.8%).
The fewest participants were from Central America (0.4%),
Russia/Mongolia (0.7%), and South America (1.1%). 7.4%
did not provide a location. The distribution of academic de-
grees, with the largest group of master degrees (46.5%),
roughly mirrors previous samples (Grosse et al. 2023b; Kag-
gle 2021). In terms of AI background, 5.2% of our par-
ticipants were trained only, with most (37.3%) having 2-5
years of working experience in AI or ML. Almost as many
(35.8%) worked for more than 5 years. In terms of team size,
most of our participants worked in teams of 6-9 (27.3%) or
3-5 (25.5%) people, less in small teams (<3, 17%) or in
teams of 10-15 (12.9%) or larger than 15 (14%). This con-
trasts previous studies (Kaggle 2021) reporting a quarter of
their population in either small or large teams.
Organizational background of participants. Although
three-quarters (77.1%) of our participants’ companies were
headquartered in North America or Europe, our sample
also encompasses companies from Africa (2.2%) and Latin
America (0.4%). The most frequent industries were health-
care (15.5%), cybersecurity (13.7%), and automotive or a



supplier of automotive (9.2%). Other areas encompassed
education (3.3%), arts and entertainment (3,3%), and fi-
nance and insurance (4,8%). The remainder were other ar-
eas. Most participants were from small companies (<50 em-
ployees, 34%). Second most were employed at large compa-
nies (>1,000 employees, 28.4%), the remainder were in be-
tween, coherent with previous studies (Grosse et al. 2023b;
Kaggle 2021). AI maturity also coincided with previous
samples (Grosse et al. 2023b; Kaggle 2021): Few (4.4%)
participants stated to work indirectly with AI, most (51.7%)
had models in production. Significantly fewer (17.7%)
were getting models into production, starting development
(11.3%), or evaluating use cases (7%).

3 Results
In this short version of the paper, we discuss the specific re-
sults of three attacks - backdoors, evasion, and model steal-
ing. For each attack, we revisit the exact threat model from
the literature and then discuss whether this commonly used
threat model matches the replies from our participants.

3.1 Training-time Attacks
Backdoor attacks rely on perturbing the training data (sam-
ples and labels) to affect the resulting model (Ji, Zhang, and
Wang 2017; Cinà et al. 2023). Afterward, the backdoor can
be used on the trained model (Ji, Zhang, and Wang 2017;
Cinà et al. 2023). Consequently, in this section, we first dis-
cuss the accessibility of training data and how much of the
data can be tampered with, before we discuss the accessibil-
ity of the test data and model-reuse.

Access to training data. We asked in how many cases
the training data is accessible (Q23). Our participants stated
that in 57.1% of cases, the training data was not accessi-
ble at all, in 34.4% it was under access control, and only
in 8.5%, the data was publicly accessible, e.g. to someone
who is neither employee at the company or client. These
numbers reflect access to the final training data—it might
still be possible to tamper with the data at its public ori-
gin; when data comes for example from the internet. To this
end, we investigated combinations of inaccessible training
data (Q23) and the percentage of training data from pub-
lic sources (Q28). Here, 100% corresponds to the subset of
all participants who reported that their training data was not
accessible. The largest group (47.1%) kept their data inac-
cessible and did not use any data from public sources. Yet,
6.6% stated that 1%-5% of their training data came from
public sources. The same held for 5%-10% (9.1%), 10%-
15% (4.1%), and 25%-50% (5%) training data from public
sources. Also, higher percentages like 50%-75% (7.4%) or
higher than 75% (10%) of the training data were from public
sources even if the resulting data was inaccessible, outlining
the need for a complex consideration of practical data secu-
rity risks.

On the other hand, only 18% of our participants re-
ported that more than 50% of the data stemmed from public
sources or that they were unsure how much came from pub-
lic sources. This may indicate that, from a practical point of
view, relying on high percentages of clean data for defenses

Table 2: Comparing assumptions about alterable training
data from academia in backdoor (Cinà et al. 2023) papers
to our participants’ reports. We first state the percent of al-
terable training data, then the number of backdoor papers
with the specific assumptions. Finally, we show the percent-
age of participants in our sample that stated this amount of
data was alterable. The two percentages marked with ∗ were
misaligned with our questionnaire and were thus estimated.

Percent training # Backdoor papers Our
data altered (Cinà et al. 2023) findings

>30% – ∗ <30.3%
10-30% 20 ∗ <10.7%
<10% 12 20.4%
∅ — 30.3%

Access to training / test data

No access
Access only to training data

Backdoors

0%         10%         20%         30%         40%         50%         60%         70%         80%         90%         100%         

Other / no reply

Figure 1: Backdoor threat model in percent of our partic-
ipants’ replies. We report 3rd party access: White denotes
incomplete data or an irrelevant threat model (e.g., only ac-
cessible test data). Black represents no access, turquoise the
backdoor threat model in academic research. Light turquoise
denotes insufficient access for backdoors.

is possible. Yet, data quality may then be a problem, and this
may be a poor security design choice.

Percent of data changed. Cinà et al. (2023) surveyed the
percentage of training data an attacker altered in backdoor
attacks. Of 32 systematized papers, about two-thirds (20)
tampered with 10-30% of the training data. While no paper
altered more data, the remaining 12 papers perturbed less
than 10% data. As before, we compared these results to the
percentage of training data from public sources (Q28). As
before, the heavily studied middle range (10-30%) was the
least common in practice.

Access to test data. To submit a backdoor, the attacker
must access the test data. We thus investigated combinations
of training and test data access within our sample and visu-
alized the results in Figure 1. Of our participants, 6.6% re-
ported training data was accessible to a 3rd party. However,
adding the constraint of accessible test data, this reduced to
4.7%; a low attack surface towards backdoors. While the
setting where only training data is available was rare, cor-
responding works exist. These are poisoning attacks, that do
not alter test data or implement backdoors that do not rely
on a trigger but instead target a small group of clean sam-
ples (Cinà et al. 2023; Geiping et al. 2021). Of 32 papers, 10
rely on this specific threat model (Cinà et al. 2023).

Fine-tuning. Another assumption often made in backdoor
attacks is that practitioners rely on existing models and fine-
tune these. We combined the information provided by Cinà
et al. (2023) about the fine-tuning setting and our partici-



Table 3: Comparing assumptions about used test queries in
black-box attacks (Mahmood et al. 2021) and model steal-
ing (Oliynyk, Mayer, and Rauber 2023) papers. We first state
the number of queries that can be submitted, then the amount
of black-box evasion and model stealing papers assuming
the specific amount. Finally, we state how many participants
stated this amount of queries could be submitted. ∗ indicates
that attacks may be possible via transferability.

Possible # Evasion black- # Model stealing Our
queries box papers papers findings

(Mahmood et al. 2021) (Oliynyk et al. 2023)

∅ ∗ — 36.5%
<100 2 5 15.6%
100-1k 8 9 4.8%
1k-100k 1 16 7.4%
>100k — 10 1.1%
∞ 11 40 15.5%

pants’ replies (Q21). Of the 32 backdoor papers, 12 dealt
with a fine-tuning setting, e.g., the user took an external
model and fine-tuned this model on internal data. Almost
half of our participants (48.1%) stated to use third-party
models and then fine-tune them. Only about a quarter de-
nied using any third-party models (24.3%). This setting was
studied in 12 (37.5%) of the backdoor papers. These find-
ings highlight the need to study security risks both for pre-
trained and end-to-end training, as is currently the case. Fur-
thermore, backdooring a model circumvents accessing the
training data.

While there are notable exceptions of papers assuming
very small backdoor percentages of less than 3% in vi-
sion (Han et al. 2022), object detection (Ma et al. 2022), and
point clouds (Xiang et al. 2021), more such work is needed.
In addition, we currently do not know which quality checks
are implemented for public data, and how an attacker could
circumvent these checks.

Take away–Training time attacks. We find evi-
dence that assumptions of backdoor threat models
are met in practice. Yet, while data can often not
be accessed directly, backdooring may be executed
via public data sources. Our participants also re-
ported frequent (about 50%) use of third-party mod-
els which are then fine-tuned.

3.2 Test-time attacks
Evasion and model stealing target a model at test time (Dalvi
et al. 2004; Szegedy et al. 2014; Biggio and Roli 2018;
Oliynyk, Mayer, and Rauber 2023). They are thus similar
and require submitting test inputs and observing the model’s
outputs. Before we cover these attacks individually, we ex-
amine these requirements in general.

In terms of test data access (Q26), almost half (45%) of
our participants reported that the samples were not acces-
sible at all, almost a quarter (23.2%) that the test data was
under access control, and only 5.1% percent that their test
data was publicly accessible. The model (Q24) was not ac-
cessible for half (49.8%) of our participants, and accessible

White-box evasion

No query access
Black-box evasion

Evasion / Adversarial Examples

0%         10%         20%         30%         40%         50%         60%         70%         80%         90%         100%         

Other / no reply

Figure 2: Evasion threat models in percent of our partici-
pants’ replies. We report 3rd party access. White denotes in-
complete data or an irrelevant threat model (e.g., only model
accessible). Black represents no access, turquoise white-box
and light turquoise black-box evasion threat models.

using authentication for one quarter (25.8%). In 7.7%, the
model was publicly available. Model outputs (Q25) were
available more readily: Outputs were not accessible in only
roughly one quarter (23.6%) of the cases, accessible under
access control in one-third (35.4%) of the cases, and freely
available in one-fifth (19.2%) of the cases.

As before, test data not accessible directly may be altered
when coming from untrusted sources (Q27). We again in-
vestigated frequent combinations. The most frequent com-
bination was (14%) no test data from public sources when
the test data was not accessible. The second most frequent
combination (2.2%) was inaccessible test data where more
than 75% stems from public sources. No other combination
occurred more than 2% or 5 times in our data.

To understand how many test queries could be submitted
when the model was publicly accessible (Q33), we again ex-
amined frequent combinations. The most frequent (8.9%) is
public model access with unconstrained queries. This was
followed by (4.1%) 10-100 queries, (1.8%) 100-1,000, and
(1.8%) 100,000-100,000,000 queries. All other combina-
tions occurred less than 5 times. This roughly mirrored the
overall distribution of replies: Most participants granted no,
few, or unlimited queries.

Take away–Test time attacks. Compared to the
training data, the threat surface is larger at test-time
but is still small when assuming that business part-
ners are benign. Queries to accessible models are
either very constrained or unconstrained.

To be able to cover each attack’s specialties, we now ana-
lyze the specific threat models individually.

Evasion. Many evasion attacks assume access to the model
and the model’s inputs at test-time to alter predictions (Big-
gio and Roli 2018; Dalvi et al. 2004; Gnanasambandam,
Sherman, and Chan 2021; Madry et al. 2018). We examined
these threat models and visualized our participants’ replies
in Figure 2. We found that 3rd party access these two fea-
tures (Q24 and Q33) was rare and only reported by 4.1%
of our participants. If we dropped the white-box constraint
and permitted the attacker to not consider the model, this
percentage increased strongly to 34.6%. As expected, black-
box attacks can be carried out more frequently.

We thus focus on black-box attacks (Biggio and Roli
2018; Mahmood et al. 2021; Croce et al. 2021; Garcia et al.
2023) and the needed queries for an attack (Q33). We re-



No access to in/outputs
Access to input/output

Model Stealing
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Other / no reply

Access to in/outputs, model available

Access only to outputs

Figure 3: Model stealing threat model in percent of our par-
ticipants’ replies. We describe 3rd party: White denotes in-
complete data or an irrelevant threat model (e.g., only test
inputs are accessible). Black represents no access, turquoise
denotes the academic threat model, gray that the attack is ob-
solete as the model is available. Red denotes a rarely studied
threat model in current research.

lied on the overview of Mahmood et al. (2021). For the sake
of this comparison, we ignore whether attacks are targeted
or untargeted and whether hard or soft labels are required,
and report the minimal empirical amount of queries doc-
umented (Mahmood et al. 2021) in Table 3. Few (2) pa-
pers operated in the most frequent setting (15.6%) with less
than 100 queries allowed. Most papers (8) needed 100-1,000
queries, which is the range least often (4.8%) reported by
our participants. One paper operates in the range of 1,000-
100,000 queries, which is slightly more frequent (7.4%). On
the other hand, 15.5% of our participants allowed infinite
queries. Access to AI systems in practice was thus all-or-
nothing, with few queries or infinitely many. Research, in
contrast, focused on the middle range, possibly as a con-
sequence of decreasing the number of queries needed. An
in-depth understanding of the required queries to attack a
model is subject to ongoing research (Garcia et al. 2023). In
addition, our work is a call for transferability studies, when
neither model nor data are known, as uttered by Sheatsley
et al. (2023). Existing work indicates that these settings are
harder than the currently studied settings where the training
data is assumed to be known (Alecci et al. 2023). Such a
setting (attacking only via test data) was most practical ac-
cording to our participants.

Take away–Evasion. Current industrial models
are vulnerable against white-box evasion in 4.1%
of the cases but vulnerable to black-box attacks in
a third of the cases. Often, the model is not avail-
able; and either very few or an unconstrained number
of queries is granted, whereas research assumes a
moderate query number. This highlights the need to
deepen our understanding of transferability.

Model stealing. Model stealing attacks target the model via
test inputs and outputs (Oliynyk, Mayer, and Rauber 2023)
(Q24, Q32, and Q33). The goal is to obtain a copy of the tar-
get model either in terms of functionality or a direct copy of
the weights. We examined this threat model in practice and
plotted the corresponding percentages in Figure 3. 44.5% of
our participants reported that public access to their model
outputs is possible. Most model stealing attacks (Oliynyk,
Mayer, and Rauber 2023; Tramèr et al. 2016) require to sub-
mit specific queries, decreasing this percentage to 35.3%. In

about a seventh of this third, or 4.1%, the model itself was
however also accessible, defeating the purpose of the attack.
Although the assumptions of model stealing are met in some
cases, in about 10% of the cases, it would be beneficial to
study model stealing attacks that are purely based on observ-
ing the outputs of samples that are not under the attacker’s
control, as somewhat studied by Papernot et al. (2017).

An additional factor in model stealing is, analogous to
black-box attacks, the submittable number of queries to the
target model (Q33). As before, we compared the number of
queries reported by Oliynyk, Mayer, and Rauber (2023) to
our sample in Table 3. Most of the 40 papers surveyed re-
quired between 100 and 100,000 queries, exactly the num-
bers our participants reported the least frequently. Only five
papers relied on less than 100 queries and thus fell within
a larger (15.6%) percentage of our sample. While we so
far ignored that not all papers report their sample complex-
ity (Oliynyk, Mayer, and Rauber 2023) and precision of the
attack may vary (Oliynyk, Mayer, and Rauber 2023), we
further investigate the relationship between the number of
queries allowed and model complexity (as approximated by
input size, Q29). There is no statistically significant corre-
lation between these two features. The most frequent com-
binations of replies were with 10.7% inputs of size 100-1k,
9.3% 10-100, and 6.3% no applicable feature size, each with
less than 10 queries. Both an input size of 10-100 with 10-
100 queries and not applicable input size with unconstrained
inputs occurred in 4.1%. All other combinations appeared
ten times or less in the responses, with 24.4% responses not
being analyzed due to missing data.

Take away—Model stealing. Model stealing can
be carried out in practice. Yet, in a few cases where
input and output are accessible, the model is accessi-
ble, too. According to our sample, a relevant setting
for model stealing attacks is only output visibility,
without submitting test queries. In addition, most at-
tacks study infrequent numbers of queries, as either
more or fewer samples are granted commonly. More
work is needed to understand the relationship be-
tween query number and model complexity.

4 Limitations
In this section, we discuss the limitations of our study. We
first describe sample limitations and then proceed to discuss
methodological limitations.
Sample limitations. Our sample is biased towards the
global north, especially Europe, and is limited to English-
speaking practitioners. We have not collected cultural or eth-
nic affiliations, or non-binary gender information and can
not exclude that our sample is biased. Although we man-
aged to recruit over 250 participants, we could not find re-
liable and consistent scientific references to estimate the
global target population of industrial AI practitioners. How-
ever, for a population larger than 50,000, and a confidence
interval of 95%, our sample’s margin of error lies around
6%. Reducing this margin significantly to a few percent, for
example 2%, would require several thousand participants.



Furthermore, in terms of demographics, our sample matches
the overall population (Kaggle 2021) rather well. As our
goal is to identify conceptual mismatches of threat models
in the wild compared to research, we find this margin of er-
ror is acceptable.
Methodological limitations. We did not review the entire
body of AI security work for our analysis. Given that there
are several thousand research articles about AI security1,
this endeavor is beyond a single paper. We instead rely on
surveys (Cinà et al. 2023; Mahmood et al. 2021; Oliynyk,
Mayer, and Rauber 2023; Jegorova et al. 2022; He et al.
2022) representing the state of the art for different attacks.
We chose these surveys explicitly as they reviewed prop-
erties related to the threat models of the analyzed attacks.
Some of these surveys focus on specific areas like computer
vision (Cinà et al. 2023). The scope of our comparison is
thus limited and may be biased. As before, we reason that
this overview is sufficient to identify conceptual gaps. As
argued, the success of some attacks like model stealing de-
pends on model complexity (Oliynyk, Mayer, and Rauber
2023). As model complexity is not straightforward to mea-
sure, we left a detailed analysis for future work. Indepen-
dently, the practical threat models we discuss represent a
momentary picture of how AI is applied in practice. Usage
may change over time, resulting in evolving threat models,
which should be monitored over time. Finally, AI usage de-
pends on a specific application, which we do not cover but
leave for future work.

5 Implications and Future Work
Having discussed the limitations, we are ready to present
the implications and implied future work of our study. As
the most important implication of our work is directing fu-
ture research in AI security, we first discuss these research
directions. Afterwards, we discuss implications concerning
AI regulation and AI security in practice. Where applicable,
we also delve into future work for these latter implications.

5.1 Future Work in AI Security
We found several gaps between the academically studied
threat models and practical AI usage (Sect. 3). Conse-
quently, most of our implications translate to direct recom-
mendations of previously overlooked aspects. In this section,
we attempt to give the big picture by combining our findings
for each attack, listing open questions alongside. At the end
of the section, we summarize insights that go beyond indi-
vidual attacks but reply to AI security in general.
Backdoors. Backdoor threat models apply in practice
(Sect. 3.1). Further studies should focus on ending the
arms-race and deepening our knowledge of defense trade-
offs (Cinà et al. 2023). At the same time, current percentages
of frequently altered training data are not well aligned with
the percentages reported by our practitioners (Sect. 3.1).
Although some practitioners currently report high training
amounts from public sources, this is deemed to decrease

1https://nicholas.carlini.com/writing/2019/all-adversarial-
example-papers.html

as attacks or data quality problems occur. Finally, given
that practitioners rely on fine-tuned pre-trained AI models
(Sect. 3.1), corresponding risks need to be assessed (Hong,
Carlini, and Kurakin 2022).
Evasion. We found evidence of the applicability of (black-
box) evasion threat models (Sect. 3.2), and recommend fur-
ther study to end the arms-race (Croce et al. 2021; Tramer
et al. 2020). Still, more emphasis should be put on study-
ing attacks that succeed without knowledge of the exact data
and model specifics (Sect. 3.2). This is aligned with previ-
ous observations that more work is required on transferabil-
ity. More precisely, and as stated by Sheatsley et al. (2023),
we should not only study model-to-model transferability, but
also transferability across different datasets. If queries are al-
lowed, the number of queries should be minimized, ideally
to less than 100, to reflect practice (Sect. 3.2).
Model stealing. We found evidence of the applicability of
model stealing threat models (Sect. 3.2). Future work should
address the corresponding arms-race (Oliynyk, Mayer, and
Rauber 2023). We further found a mismatch of used queries
in model stealing and a mismatch for the attacker’s capa-
bilities overall (Sect. 3.2). Consequently, we recommend re-
ducing used queries, and not relying on currently reported
high amounts of queries, similar to evasion. Furthermore,
observing only outputs is a valid, currently scarcely stud-
ied threat model. It may thus be beneficial to understand the
limitations of retrieving information only by observing out-
puts (Papernot et al. 2017). In addition, more work should
study how query number and model complexity relate in
practice. Such results would also hold implications for other
inference attacks based on test queries like inversion attacks
or model extraction (Jegorova et al. 2022).

5.2 Practical Implications
Our research has however implications beyond AI security
research, relating to both regulations and required knowl-
edge about AI security in practice, which we discuss now.
Regulatory and societal implications. Assessing the true
vulnerability of AI in practice has implications for regula-
tion, as current proposals like the EU AI Act demand that
training data be secure. For example, knowing few models
are accessible to 3rd parties in practice (Sect. 3) may imply
that similar requirements be a possibility to enhance secu-
rity. A complete analysis of used access schemes is however
most likely related to use-case, industry area, and other fac-
tors, and thus left for future work. Beyond regulation, as-
sessing vulnerabilities helps to manage the risk of potential
security incidents. Using our threat models (Sect. 3), the risk
assessment of AI products in practice can now be completed
as previously unknown settings can be studied. In this sense,
our work has the potential to reduce what formerly were
blind spots in AI systems.
AI security in practice. We find that all 3 attacks studied
within the framework of AI security are theoretically pos-
sible in practice. The percentage of our 271 participants re-
porting the exact required access means to conduct current
attacks is however small, potentially contributing to an ex-
planation of formerly found low percentages of security in-



cidents (Grosse et al. 2023b). Analogously, we need to un-
derstand the limitations of knowing data at all in practice.
In tasks such as malware detection, feature encodings are
secret, limiting the attacker (Biggio and Roli 2018). More
work is needed to understand these limitations and how fre-
quent they are in practice. Orthogonally, we recommend
more work studying what influences the exact configuration
of threat models in organizational contexts. A deep under-
standing of which threat models are used in which cases
could help to anticipate and mitigate vulnerabilities, but also
understand which properties enable AI vulnerabilities. Fi-
nally, we have not studied AI vulnerabilities from the de-
fender’s perspective, a valuable endeavour.

6 Related Work
Several contributions criticize existing scientific threat mod-
els in AI security (Gilmer et al. 2018; Evtimov et al. 2020;
Apruzzese et al. 2022; Cinà et al. 2023). To the best of our
knowledge, none of these works provides an overall picture
of the research gap in AI security in practice.

Few works collect loosely similar information to our
work, including the Kaggle (2021) annual report about ML
and data science, which provides information on, for ex-
ample, the algorithms used in practice. Furthermore, Nahar
et al. (2022) investigated the origin of the used data, yet in
a small qualitative sample. They also document the influ-
ence data engineers have on data requirements (Nahar et al.
2022). Dilhara, Ketkar, and Dig (2021) studied the usage of
libraries in ML-based code, but based their study on avail-
able repositories, not industry applications. Renieris, Kiron,
and Mills (2023) examined the practical usage of third-party
tools and found that almost three-quarters use such tools.
The same authors show that the same tools may cause AI
failures. Finally, Mink et al. (2023) investigate the number
of deployed AI security mitigations in practice.

Previous works reported low (Boenisch et al. 2021) to
medium (Grosse et al. 2023b) AI security concern by indus-
trial practitioners—our work indicates that this impression
may stem from an indeed small attack surface due to little
granted access to AI systems in practice.

7 Conclusion
We took a significant step towards more practical AI secu-
rity research. We surveyed common threat model properties
in practice, including data and model access, the number
of queries, and data from public sources. We then matched
this information to three threat models from AI security re-
search. Our findings have implications for current legisla-
tive attempts like the EU AI Act that require security and
vulnerability assessments of AI systems. We also set pre-
viously low numbers of AI security incidents into context
and paved the way towards a deep understanding of the se-
curity of AI-based products in practice. Most importantly,
while academia, despite criticism, has elaborated valid threat
models, we also identify significant gaps. In general, current
threat models are too generous about training data access
or test time queries. The prevailing assumptions on attacker
knowledge in, for example, model stealing, and backdoors

are too generous. Our paper is thus a call for action to study
more practical threat models in AI security research.
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